Template:Oom2
Appearance
This template determines the log to the base 2, rounded down to an integer (binary Order Of Magnitude), of a number of type float. In other words, it determines the log to the base 2 of the number rounded down to a power of 2.
The internally representable number should not be confused with the given decimal number:
{{oom2|3.9999999999999999}}
β 2
Thus the template takes the input as representing an internally representable number, just like #expr does, as opposed to applying string operations to find the characters in the decimal notation and then find the required quantity for the exact decimal number.
{{oom2|1e2}}
β 6{{oom2|1e3}}
β 9{{oom2|1e4}}
β 13{{oom2|1e5}}
β 16{{oom2|1e6}}
β 19{{oom2|1e7}}
β 23{{oom2|1e8}}
β 26{{oom2|1e9}}
β 29{{oom2|1e10}}
β 33{{oom2|1e11}}
β 36{{oom2|1e12}}
β 39{{oom2|1e13}}
β 43{{oom2|1e14}}
β 46{{oom2|1e15}}
β 49{{oom2|1e16}}
β 53{{oom2|1e17}}
β 56{{oom2|1e18}}
β 59{{oom2|1e19}}
β 63{{oom2|1e20}}
β 66{{oom2|trunc2^trunc53-trunc1}}
β 52{{oom2|trunc2^trunc53}}
β 53{{oom2|trunc2^trunc54-trunc1}}
β 53{{oom2|trunc2^trunc54}}
β 54{{oom2|trunc2^trunc55-trunc1}}
β 54{{oom2|trunc2^trunc55}}
β 55{{oom2|trunc2^trunc56-trunc1}}
β 55{{oom2|trunc2^trunc56}}
β 56{{oom2|trunc2^trunc57-trunc1}}
β 56{{oom2|trunc2^trunc57}}
β 57{{oom2|trunc2^trunc58-trunc1}}
β 57{{oom2|trunc2^trunc58}}
β 58{{oom2|trunc2^trunc59-trunc1}}
β 58{{oom2|trunc2^trunc59}}
β 59{{oom2|trunc2^trunc60-trunc1}}
β 59{{oom2|trunc2^trunc60}}
β 60{{oom2|trunc2^trunc61-trunc1}}
β 60{{oom2|trunc2^trunc61}}
β 61{{oom2|trunc2^trunc62-trunc1}}
β 61{{oom2|trunc2^trunc62}}
β 62{{oom2|trunc2^trunc62-trunc1+trunc2^trunc62}}
β 62{{oom2|trunc2^trunc63}}
β 63{{oom2|2^-900-2^-953}}
β -901{{oom2|2^-900-2^-954}}
β -900{{#expr:(2^-900-2^-954)-2^-900}}
β 0
{{oom2|2^1000-2^947}}
β 999{{oom2|2^1000-2^946}}
β 1000{{#expr:(2^1000-2^946)-2^1000}}
β 0
{{oom2|2^1000}}
β 1000{{oom2|2^1001}}
β 1001{{oom2|2^1002}}
β 1002{{oom2|2^1003}}
β 1003{{oom2|2^1004}}
β 1004{{oom2|2^1005}}
β 1005{{oom2|2^1006}}
β 1006{{oom2|2^1007}}
β 1007{{oom2|2^1008}}
β 1008{{oom2|2^1009}}
β 1009{{oom2|2^1010}}
β 1010{{oom2|2^1011}}
β 1011{{oom2|2^1012}}
β 1012{{oom2|(2-2^-52)*2^1000}}
β 1000{{oom2|(2-2^-52)*2^1001}}
β 1001{{oom2|(2-2^-52)*2^1002}}
β 1002{{oom2|(2-2^-52)*2^1003}}
β 1003{{oom2|(2-2^-52)*2^1004}}
β 1004{{oom2|(2-2^-52)*2^1005}}
β 1005{{oom2|(2-2^-52)*2^1006}}
β 1006{{oom2|(2-2^-52)*2^1007}}
β 1007{{oom2|(2-2^-52)*2^1008}}
β 1008{{oom2|(2-2^-52)*2^1009}}
β 1009{{oom2|(2-2^-52)*2^1010}}
β 1010{{oom2|(2-2^-52)*2^1011}}
β 1011{{oom2|(2-2^-52)*2^1023}}
β 1023{{oom2|(2-2^-52)*2^1023}}
β 1023{{oom2|(2-2^-52)*2^1023}}
β 1023{{oom2|2^1024}}
β INF{{oom2|2^-1074}}
β -1074{{oom2|2^-1075}}
β -1E308{{oom2|0}}
β -1E308
{{#expr:2^{{oom2|2^-1075}}}}
β 0{{#expr:2^{{oom2|0}}}}
β 0
{{oom2|2^61}}
β 61{{oom2|trunc(2^62-512)+trunc511}}
β 61{{oom2|2^62}}
β 62{{oom2|1.5*2^62}}
β 62{{oom2|trunc(2^63-1024)+trunc1023}}
β 62{{oom2|1.5*2^63}}
β 63