Jump to content

StrepHit

From mediawiki.org

StrepHit is an intelligent reading agent that understands text and translates it into Wikidata statements.

More specifically, it is a Natural Language Processing pipeline that extracts facts from text and produces Wikidata statements with references. Its final objective is to enhance the data quality of Wikidata by suggesting references to validate statements.

StrepHit was born in January 2016 and is funded by a Wikimedia Foundation Individual Engagement Grant (IEG).

This page contains the technical documentation.

Source Code

[edit]

back to top

The whole codebase can be found on GitHub: https://github.com/Wikidata/StrepHit

Features

[edit]

back to top

  • Extraction of sentences and semi-structured data from a corpus
  • Extract facts from text in 2 ways:

Pipeline

[edit]

back to top

  1. Corpus Harvesting
  2. Corpus Analysis
  3. Sentence Extraction
  4. N-ary Relation Extraction
  5. Dataset Serialization

strephit.annotation package

[edit]

back to top

strephit.annotation.create_crowdflower_input module

[edit]

back to top


strephit.annotation.create_crowdflower_input.prepare_crowdflower_input(sentences, frame_data, filter_places)



strephit.annotation.create_crowdflower_input.write_input_spreadsheet(data_units, outfile)


strephit.annotation.generate_cml module

[edit]

back to top


strephit.annotation.generate_cml.generate_crowdflower_interface_template(input_csv, output_html)


Generate CrowFlower interface template based on input data spreadsheet
Parameters:
  • input_csv (file) -- CSV file with the input data
  • output_html (file) -- File in which to write the output
Returns:
0 on success

strephit.annotation.parse_results module

[edit]

back to top


strephit.annotation.parse_results.process_unit(unit_id, sentences)


strephit.annotation.post_job module

[edit]

back to top


strephit.annotation.post_job.activate_gold(job_id)


Activate gold units in the given job.
Corresponds to the 'Convert Uploaded Test Questions' UI button.
Parameters:
job_id (str) -- job ID registered in CrowdFlower
Returns:
True on success
Return type:
boolean


strephit.annotation.post_job.config_job(job_id)


Setup a given CrowdFlower job with default settings.
See :const: JOB_SETTINGS
Parameters:
job_id (str) -- job ID registered in CrowdFlower
Returns:
the uploaded job response object, as per https://success.crowdflower.com/hc/en-us/articles/201856229-CrowdFlower-API-API-Responses-and-Messaging#job_response on success, or an error message
Return type:
dict


strephit.annotation.post_job.create_job(title, instructions, cml, custom_js)


Create an empty CrowdFlower job with the specified title and instructions.
Raise any HTTP error that may occur.
Parameters:
  • title (str) -- plain text title
  • instructions (str) -- instructions, can contain HTML
  • custom_js (str) -- JavaScript code to be injected into the job
Returns:
the created job response object, as per https://success.crowdflower.com/hc/en-us/articles/201856229-CrowdFlower-API-API-Responses-and-Messaging#job_response on success, or an error message
Return type:
dict


strephit.annotation.post_job.tag_job(job_id, tags)


Tag a given job.
Parameters:
  • job_id (str) -- job ID registered in CrowdFlower
  • tags (list) -- list of tags
Returns:
True on success
Return type:
boolean


strephit.annotation.post_job.upload_units(job_id, csv_data)


Upload the job data units to the given job.
Raises any HTTP error that may occur.
Parameters:
  • job_id (str) -- job ID registered in CrowdFlower
  • csv_data (file) -- file handle pointing to the data units CSV
Returns:
the uploaded job response object, as per https://success.crowdflower.com/hc/en-us/articles/201856229-CrowdFlower-API-API-Responses-and-Messaging#job_response on success, or an error message
Return type:
dict

strephit.annotation.pull_results module

[edit]

back to top


strephit.annotation.pull_results.download_full_report(job_id)


Download the full CSV report of the given job.
See https://success.crowdflower.com/hc/en-us/articles/202703075-Guide-to-Reports-Page-and-Settings-Page#full_report
Raises any HTTP error that may occur.
Parameters:
job_id (str) -- job ID registered in CrowdFlower


strephit.annotation.pull_results.get_latest_job_id()


Get the ID of the most recent job.
Returns:
the latest job ID
Return type:
str

strephit.classification package

[edit]

back to top

strephit.classification.classify module

[edit]

back to top


class strephit.classification.classify.SentenceClassifier(model, extractor, language, gazetteer)


Supervised Sentence classifier

classify_sentences(sentences)


Classify the given sentences
Parameters:
sentences (list) -- sentences to be classified. Each one
should be a dict with a *text*, a source *url* and some *linked_entities*
Returns:
Classified sentences with the recognized *fes*
Return type:
generator of dicts

strephit.classification.feature_extractors module

[edit]

back to top


class strephit.classification.feature_extractors.BaseFeatureExtractor


Feature extractor template. Will process sentences one by one
accumulating their features and finalizes them into the final
training set.
It should be used to extract features prior to classification,
in which case the fe arguments can be used to group tokens of
the same entity into a single chunk while ignoring the actual
frame element name, e.g. *fes = dict(enumerate(entities))*

get_features()


Returns the final training set
Returns:
A matrix whose rows are samples and columns are features and a
column vector with the sample label (i.e. the correct answer for the classifier)
Return type:
tuple

process_sentence(sentence, fes, add_unknown, gazetteer)


Extracts and accumulates features for the given sentence
Parameters:
  • sentence (unicode) -- Text of the sentence
  • fes (dict) -- Dictionary with FEs and corresponding chunks
  • add_unknown (bol) -- Whether unknown tokens should be added to the index of treaded as a special, unknown token. Set to True when building the training set and to False when building the features used to classify new sentences
  • gazetteer (dict) -- Additional features to add when a given chunk is found in the sentence. Keys should be chunks and values should be list of features
Returns:
Nothing

start()


Clears the features accumulated so far and starts over.


class strephit.classification.feature_extractors.FactExtractorFeatureExtractor(language, window_width=2)


Bases: "strephit.classification.feature_extractors.BaseFeatureExtractor"
Feature extractor inspired from the fact-extractor

extract_features(sentence, fes, add_unknown, gazetteer)


Extracts the features for each token of the sentence
Parameters:
  • sentence (unicode) -- Text of the sentence
  • fes (dicr) -- mapping FE -> chunk
  • gazetteer (dict) -- mapping chunk -> additional features
Returns:
List of features, each one as a sparse row
(i.e. with the indexes of the relevant columns)

feature_for(term, type_, position, add_unknown)


Returns the feature for the given token, i.e. the column of the feature in a sparse matrix
Parameters:
  • term (str) -- Actual term
  • type (str) -- Type of the term, for example token, pos or lemma
  • position (int) -- Relative position (used for context windows)
  • add_unknown (bool) -- Whether to add previously unseen terms to the dictionary or use the UNK token instead
Returns:
Column of the corresponding feature

get_features()



process_sentence(sentence, fes, add_unknown, gazetteer)



sentence_to_tokens(sentence, fes)


Transforms a sentence into a list of tokens
Parameters:
  • sentence (unicode) -- Text of the sentence
  • fes (dict) -- mapping FE -> chunk
Returns:
List of tokens

start()



token_to_features(tokens, position, add_unknown, gazetteer)


Extracts the features for the token in the given position
Parameters:
  • tokens (list) -- POS-tagged tokens of the sentence
  • position (int) -- position of the token for which features are requestsd
  • gazetteer (dict) -- mapping chunk -> additional features
Returns:
sparse set of features (i.e. numbers are indexes in a row of a sparse matrix)


class strephit.classification.feature_extractors.SortedSet


Very simple sorted unique collection which remembers
the order of insertion of its items

index(item)



put(item)



reverse_map()


strephit.classification.train module

[edit]

back to top

strephit.commons package

[edit]

back to top

strephit.commons.cache module

[edit]

back to top


strephit.commons.cache.cached(function)


Decorator to cache function results based on its arguments
Sample usage:
>>> from strephit.commons import cache
>>> @cache.cached
... def f(x):
...     print 'inside f'
...     return 2 * x
...
>>> f(10)
inside f
20
>>> f(10)
20


strephit.commons.cache.get(key, default=None)


Retrieves an item from the cache
Parameters:
  • key -- Key of the item
  • default -- Default value to return if the key is not in the cache
Returns:
The item associated with the given key or
the default value
Sample usage:
>>> from strephit.commons import cache
>>> cache.get('kk', 13)
13
>>> cache.get('kk', 0)
0
>>> cache.set('kk', 15)
>>> cache.get('kk', 0)
15


strephit.commons.cache.set(key, value, overwrite=True)


Stores an item in the cache under the given key
Parameters:
  • key -- Unique key used to identify the idem.
  • value -- Value to store in the cache. Must be JSON-dumpable
  • overwrite -- Whether to overwrite the previous value associated with the key (if any)
Returns:
Nothing
Sample usage:
>>> from strephit.commons import cache
>>> cache.get('kk', 13)
13
>>> cache.get('kk', 0)
0
>>> cache.set('kk', 15)
>>> cache.get('kk', 0)
15

strephit.commons.classification module

[edit]

back to top


strephit.commons.classification.apply_custom_classification_rules(classified, language, overwrite=False)


Implements simple custom, classifier-agnostic rules for
recognizing some frame elements
Parameters:
  • classified (dict) -- an item produced by the classifier
  • language (str) -- Language of the sentence
  • overwrite (bool) -- Tells the priority in case the rules assign a role to the same chunk recognized by the classifier
Returns:
The same item with augmented FEs


strephit.commons.classification.reverse_gazetteer(gazetteer)


Reverses the gazetteer from feature -> chunks to chunk -> features
Parameters:
gazetteer (dict) -- Gazetteer associating chunks to features
Returns:
An equivalent gazetteer associating features to chunks
Return type:
dict

strephit.commons.date_normalizer module

[edit]

back to top


class strephit.commons.date_normalizer.DateNormalizer(language=None, specs=None)


Bases: "object"
find matches in text strings using regular expressions and transforms them
according to a pattern transformation expression evaluated on the match
the specifications are given in yaml format and allow to define meta functions
and meta variables as well as the pattern and transformation rules themselves.
meta variables will be placed inside patterns which use them in order to
make writing patterns easier. meta variables will be available to use from
inside the meta functions too as a dictionary named meta_vars
a pattern transformation expression is an expression which will be evaluated
if the corresponding regular expression matches. the pattern transformation
will have access to all the meta functions and meta variables defined and
to a variable named 'match' containing the regex match found

normalize_many(expression)


Find all the matching entities in the given expression expression
Parameters:
expression (str) -- The expression in which to look for
Returns:
Generator of tuples (start, end), category, result
Sample usage:
>>> from pprint import pprint
>>> from strephit.commons.date_normalizer import DateNormalizer
>>> pprint(list(DateNormalizer('en').normalize_many('I was born on April 18th, '
...                                                 'and today is April 18th, 2016!')))
[((14, 24), 'Time', {'day': 18, 'month': 4}),
 ((39, 55), 'Time', {'day': 18, 'month': 4, 'year': 2016})]

normalize_one(expression, conflict='longest')


Find the matching part in the given expression
Parameters:
  • expression (str) -- The expression in which to search the match
  • conflict (str) -- Whether to return the first match found or scan through all the provided regular expressions and return the longest or shortest part of the string matched by a regular expression. Note that the match will always be the first one found in the string, this parameter tells how to resolve conflicts when there is more than one regular expression that returns a match. When more matches have the same length the first one found counts Allowed values are *first*, *longest* and *shortest*
Returns:
Tuple with (start, end), category, result
Return type:
tuple
Sample usage:
>>> from strephit.commons.date_normalizer import DateNormalizer
>>> DateNormalizer('en').normalize_one('Today is the 1st of June, 2016')
((13, 30), 'Time', {'month': 6, 'day': 1, 'year': 2016})


strephit.commons.date_normalizer.normalize_numerical_fes(language, text)


Normalize numerical FEs in a sentence

strephit.commons.datetime module

[edit]

back to top


strephit.commons.datetime.parse(string)


Try to parse a date expressed in natural language.
Parameters:
string (str) -- Date in natural language
Returns:
dictionary with year, month, day
Type:
dict

strephit.commons.entity_linking module

[edit]

back to top


strephit.commons.entity_linking.extract_entities(response_json)


Extract the list of entities from the Dandelion Entity Extraction API JSON response.
Parameters:
response_json (dict) -- JSON response returned by Dandelion
Returns:
The extracted entities, with the surface form, start and end indices URI, and ontology types
Return type:
list

strephit.commons.io module

[edit]

back to top


strephit.commons.io.dump_corpus(corpus, dump_file_handle)


Dump a loaded corpus to a file with one JSON object per line .


strephit.commons.io.get_and_cache(url, use_cache=True, **kwargs)


Perform an HTTP GET request to the given url and optionally cache the
result somewhere in the file system. The cached content will be used
in the subsequent requests.
Raises all HTTP errors
Parameters:
  • url -- URL of the page to retrieve
  • use_cache -- Whether to use cache
  • **kwargs -- keyword arguments to pass to *requests.get*
Returns:
The content page at the given URL, unicode


strephit.commons.io.load_corpus(location, document_key, text_only=False)


Load an input corpus from a directory with scraped items, in a memory-efficient way.
Each input file must contain one JSON object per line.
Parameters:
document_key (str) -- a scraped item dictionary key holding textual documents


strephit.commons.io.load_dumped_corpus(dump_file_handle, document_key, text_only=False)


Load a previously dumped corpus file, in a memory-efficient way.


strephit.commons.io.load_scraped_items(location)


Loads all the items from a directory or file.
Parameters:
location --
Where is the corpus.
  • If it is a directory, all files with extension jsonlines will be loaded.
  • if it is a file, it can be either a jsonlines of a tar compressed file.

strephit.commons.logging module

[edit]

back to top


strephit.commons.logging.log_request_data(http_response, logger)


Send a debug log message with basic information of the HTTP request that was sent for the given HTTP response.
Parameters:
http_response (requests.models.Response) -- HTTP response object


strephit.commons.logging.setLogLevel(module, level)


Sets the log level used to log messages from the given module


strephit.commons.logging.setup()


strephit.commons.parallel module

[edit]

back to top


strephit.commons.parallel.execute(processes=0, *specs)


Execute the given functions parallelly
Parameters:
  • processes -- Number of functions to execute at the same time
  • specs -- a sequence of functions, each followed by its arguments (arguments as a tuple or list)
Returns:
the results that the functions returned, in the same order as they were specified
Return type:
list
Sample usage:
>>> from strephit.commons import parallel
>>> list(parallel.execute(4,
...     lambda x, y: x + y, (5, -5),
...     lambda *x: sum(x), range(5)
... ))
[0, 10]


strephit.commons.parallel.make_batches(iterable, size)



strephit.commons.parallel.map(function, iterable, processes=0, flatten=False, raise_exc=True, batch_size=0)


Applies the given function to each element of the iterable in parallel.
  • None* values are not allowed in the iterable nor as return values, they will
simply be discarded. Can be "safely" stopped with a keboard interrupt.
Parameters:
  • function -- the function used to transform the elements of the iterable
  • processes -- how many items to process in parallel. Use zero or a negative number to use all the available processors. No additional processes will be used if the value is 1.
  • flatten -- If the mapping function return an iterable flatten the resulting iterables into a single one.
  • raise_exc -- Only when *processes* equals 1, controls whether to propagate the exception raised by the mapping function to the called or simply to log them and carry on the computation. When *processes* is different than 1 this parameter is not used.
  • batch_size -- If larger than 0, the input iterable will be grouped in groups of this size and the resulting list passed to as argument to the worker.
Returns:
iterable with the results. Order is not guaranteed to be preserved
Sample usage:
>>> from strephit.commons import parallel
>>> list(parallel.map(lambda x: 2*x, range(10)))
[0, 8, 10, 12, 14, 16, 18, 2, 4, 6]

strephit.commons.pos_tag module

[edit]

back to top


class strephit.commons.pos_tag.NLTKPosTagger(language)


Bases: "object"
part-of-speech tagger implemented using the NLTK library

tag_many(documents, tagset=None, **kwargs)


POS-Tag many documents.

tag_one(text, tagset, **kwargs)


POS-Tags the given text


class strephit.commons.pos_tag.TTPosTagger(language, tt_home=None, **kwargs)


Bases: "object"
part-of-speech tagger implemented using tree tagger and treetaggerwrapper

tag_many(items, document_key, pos_tag_key, batch_size=10000, **kwargs)


POS-Tags many text documents of the given items. Use this for massive text tagging
Parameters:
  • items -- Iterable of items to tag. Generator preferred
  • document_key -- Where to find the text to tag inside each item. Text must be unicode
  • pos_tag_key -- Where to put pos tagged text
Sample usage:
>>> from strephit.commons.pos_tag import TTPosTagger
>>> from pprint import pprint
>>> pprint(list(TTPosTagger('en').tag_many(
...     [{'text': 'Item one is in first position'}, {'text': 'In the second position is item two'}],
...     'text', 'tagged'
... )))
[{'tagged': [Tag(word='Item', pos='NN', lemma='item'),
             Tag(word='one', pos='CD', lemma='one'),
             Tag(word='is', pos='VBZ', lemma='be'),
             Tag(word='in', pos='IN', lemma='in'),
             Tag(word='first', pos='JJ', lemma='first'),
             Tag(word='position', pos='NN', lemma='position')],
  'text': 'Item one is in first position'},
 {'tagged': [Tag(word='In', pos='IN', lemma='in'),
             Tag(word='the', pos='DT', lemma='the'),
             Tag(word='second', pos='JJ', lemma='second'),
             Tag(word='position', pos='NN', lemma='position'),
             Tag(word='is', pos='VBZ', lemma='be'),
             Tag(word='item', pos='RB', lemma='item'),
             Tag(word='two', pos='CD', lemma='two')],
  'text': 'In the second position is item two'}]

tag_one(text, skip_unknown=True, **kwargs)


POS-Tags the given text, optionally skipping unknown lemmas
Parameters:
  • text (unicode) -- Text to be tagged
  • skip_unknown (bool) -- Automatically emove unrecognized tags from the result
Sample usage:
>>> from strephit.commons.pos_tag import TTPosTagger
>>> from pprint import pprint
>>> pprint(TTPosTagger('en').tag_one('sample sentence to be tagged fycgvkuhbj'))
[Tag(word='sample', pos='NN', lemma='sample'),
 Tag(word='sentence', pos='NN', lemma='sentence'),
 Tag(word='to', pos='TO', lemma='to'),
 Tag(word='be', pos='VB', lemma='be'),
 Tag(word='tagged', pos='VVN', lemma='tag')]

tokenize(text)


Splits a text into tokens


strephit.commons.pos_tag.get_pos_tagger(language, **kwargs)


Returns an initialized instance of the preferred POS tagger for the given language

strephit.commons.scoring module

[edit]

back to top


strephit.commons.scoring.compute_score(sentence, score, core_fes_weight)


Computes the confidency score for a sentence based on FE scores
Parameters:
  • sentence (dict) -- Data of the sentence, containing FEs
  • score (str) -- Type of score: arithmetic-mean, weighted-mean, f-score
  • core_fes_weight (float) -- Weight of core FEs wrt extra FEs

strephit.commons.serialize module

[edit]

back to top


class strephit.commons.serialize.ClassificationSerializer(language, frame_data, url_to_wid=None)



get_subjects(data)


Finds all subjects of the frame assigned to the sentence
Parameters:
data (dict) -- classification results
Returns:
all subjects as tuples (chunk, wikidata id)
Return type:
generator of tuples

static map_fe_to_wid(frame_data)



serialize_numerical(subj, fe, url)


Serializes a numerical FE found by the normalizer

to_statements(data, input_encoded=True)


Converts the classification results into quick statements
Parameters:
  • data -- Data from the classifier. Can be either str or dict
  • input_encoded (bool) -- Whether data is a str or a dict
Returns:
Tuples <success, item> where item is a statement if success
is true else it is a named entity which could not be resolved
Type:
generator


strephit.commons.serialize.map_url_to_wid(semistructured)


Read the quick statements generated from the semi structured data
and build a map associating url to wikidata id

strephit.commons.split_sentences module

[edit]

back to top


class strephit.commons.split_sentences.PunktSentenceSplitter(language)


Bases: "object"
Sentence splitting splits a natural language text into sentences

model_path = 'tokenizers/punkt/%s.pickle'



split(text)


Split the given text into sentences.
Leading and trailing spaces are stripped.
Newline characters are first interpreted as sentence boundaries.
Then, the sentence splitter is run.
Parameters:
text (str) -- Text to be split
Returns:
the sentences in the text
Return type:
generator
Sample usage:
>>> from strephit.commons.split_sentences import PunktSentenceSplitter
>>> list(PunktSentenceSplitter('en').split(
...     "This is the first sentence. Mr. period doesn't always delimit sentences"
... ))
['This is the first sentence.', "Mr. period doesn't always delimit sentences"]

split_tokens(tokens)


Splits the given text into sentences.
Parameters:
tokens (list) -- the tokens of the text
Returns:
the sentences i the text
Return type:
generator
Sample usage:
>>> from strephit.commons.split_sentences import PunktSentenceSplitter
>>> list(PunktSentenceSplitter('en').split_tokens(
...     "This is the first sentence. Mr. period doesn't always delimit sentences".split()
... ))
[['This', 'is', 'the', 'first', 'sentence.'], ['Mr.', 'period', "doesn't", 'always', 'delimit', 'sentences']]

supported_models = {'el': 'tokenizers/punkt/greek.pickle', 'fr': 'tokenizers/punkt/french.pickle', 'en': 'tokenizers/punkt/english.pickle', 'nl': 'tokenizers/punkt/dutch.pickle', 'pt': 'tokenizers/punkt/portuguese.pickle', 'no': 'tokenizers/punkt/norwegian.pickle', 'sv': 'tokenizers/punkt/swedish.pickle', 'de': 'tokenizers/punkt/german.pickle', 'tr': 'tokenizers/punkt/turkish.pickle', 'it': 'tokenizers/punkt/italian.pickle', 'da': 'tokenizers/punkt/danish.pickle', 'cz': 'tokenizers/punkt/czech.pickle', 'es': 'tokenizers/punkt/spanish.pickle', 'fi': 'tokenizers/punkt/finnish.pickle', 'et': 'tokenizers/punkt/estonian.pickle', 'sl': 'tokenizers/punkt/slovene.pickle', 'pl': 'tokenizers/punkt/polish.pickle'}


strephit.commons.stopwords module

[edit]

back to top


class strephit.commons.stopwords.StopWords


Bases: "object"
This module retrieves stop words for a given language

classmethod words(language)


Returns a list of stop words for a specified language
Parameters:
language (str) -- the language whose stop words are required
Returns:
Stop words if language is supported. Else an empty list
Return type:
list

strephit.commons.text module

[edit]

back to top


strephit.commons.text.clean(s, unicode=True)



strephit.commons.text.clean_extract(sel, path, path_type='xpath', limit_from=None, limit_to=None, sep='\n', unicode=True)



strephit.commons.text.extract_dict(response, keys_selector, values_selector, keys_extractor='.//text()', values_extractor='.//text()', **kwargs)


Extracts a dictionary given the selectors for the keys and the vaues.
The selectors should point to the elements containing the text and not the
text itself.
Parameters:
  • response -- The response object. The methods xpath or css are used
  • keys_selector -- Selector pointing to the elements containing the keys, starting with the type *xpath:* or *css:* followed by the selector itself
  • values_selector -- Selector pointing to the elements containing the values, starting with the type *xpath:* or *css:* followed by the selector itself
  • keys_extracotr -- Selector used to actually extract the value of the key from each key element. xpath only
  • keys_extracotr -- Selector used to extract the actual value value from each value element. xpath only
  • **kwargs -- Other parameters to pass to *clean_extract*. Nothing good will come by passing *path_type='css'*, you have been warned.


strephit.commons.text.fix_name(name)


tries to normalize a name so that it can be searched with the wikidata APIs
Parameters:
name -- The name to normalize
Returns:
a tuple with the normalized name and a list of honorifics


strephit.commons.text.parse_birth_death(string)


Parses birth and death dates from a string.
Parameters:
string -- String with the dates. Can be 'd. <year>' to indicate the
year of death, 'b. <year>' to indicate the year of birth, <year>-<year>
to indicate both birth and death year. Can optionally include 'c.' or 'ca.'
before years to indicate approximation (ignored by the return value).
If only the century is specified, birth is the first year of the century and
death is the last one, e.g. '19th century' will be parsed as *('1801', '1900')*
Returns:
tuple *(birth_year, death_year)*, both strings as appearing in the original string.
If the string cannot be parsed *(None, None)* is returned.


strephit.commons.text.split_at(content, delimiters)


Splits content using given delimiters following their order, for example
>>> [x for x in split_at(range(11), range(3,10,3))]
[(None, [1, 2]), (3, [4, 5]), (6, [7, 8]), (None, [9, 10])]


strephit.commons.text.strip_honorifics(name)


Removes honorifics from the name
Parameters:
name -- The name
Returns:
a tuple with the name without honorifics and a list of honorifics

strephit.commons.tokenize module

[edit]

back to top


class strephit.commons.tokenize.Tokenizer(language)


Tokenization splits a natural language utterance into words (tokens)

tokenization_regexps = {'en': '[^\\p{L}\\p{N}]+', 'it': '[^\\p{L}\\p{N}]+'}



tokenize(sentence)


Tokenize the given sentence.
You can also pass a generic text, but you will lose the sentence segmentation.
Parameters:
sentence (str) -- a natural language sentence or text to be tokenized
Returns:
the list of tokens
Return type:
list

strephit.commons.wikidata module

[edit]

back to top


strephit.commons.wikidata.call_api(action, cache=True, **kwargs)


Invoke the given method of wikidata APIs with the given parameters


strephit.commons.wikidata.finalize_statement(subject, property, value, language, url=None, resolve_property=True, resolve_value=True, **kwargs)


Given the components of a statement, convert it into a quick statement.
Parameters:
  • subject -- Subject of the statement (its Wikidata ID)
  • property -- Property of the statement
  • value -- Value of the statement (to be resolved)
  • language -- Language used to resolve the value
  • url -- Source of the statement (corresponds to S854)
  • resolve_property -- Whether *property* is already a Wikidata ID or needs to be resolved
  • resolve_value -- Whether *value* can be inserted into the statement as-is or needs to be resolved
  • kwargs -- additional information used to resolve *value*


strephit.commons.wikidata.format_date(year=None, month=None, day=None)


Formats a date according to Wikidata syntax. Assumes that the date is mostly
correct. The allowed values of the parameters are shown in the following
truth table
yearmonthdayok
1111
1101
1010
1001
0111
0100
0010
0000
Parameters:
  • year -- year of the date
  • month -- month of the date. Only positive values allowed
  • day -- day of the date. Only positive values allowed


strephit.commons.wikidata.get_entities(ids, batch)


Retrieve Wikidata entities metadata.
Parameters:
  • ids (list) -- list of Wikidata entity IDs
  • batch (int) -- number of IDs per call, to serve as paging for the API.
Returns:
dict of Wikidata entities with metadata
Return type:
dict


strephit.commons.wikidata.get_labels_and_aliases(entities, language_code)


Extract language-specific label and aliases from a list of Wikidata entities metadata.
Parameters:
  • entities (list) -- list of Wikidata entities with metadata.
  • language_code (str) -- 2-letter language code, e.g., *en* for English
Returns:
dict of entities, with label and aliases only
Return type:
dict


strephit.commons.wikidata.get_property_ids(batch)


Get the full list of Wikidata property IDs (pids).
Parameters:
batch (int) -- number of pids per call, to serve as paging for the API.
Returns:
list of all pids
Return type:
list


strephit.commons.wikidata.honorifics_resolver(property, value, language, **kwargs)


Resolves honorifics such as "mr.", "dr." etc


strephit.commons.wikidata.identity_resolver(property, value, language, **kwargs)


Default resolver, converts to unicode and surrounds with double quotes


strephit.commons.wikidata.parse_date(date, precision=None)


Tries to parse a date serialized according to the wikidata format
into its components year, month and day
Returns:
dict (year, month, day)


strephit.commons.wikidata.resolve(property, value, language, **kwargs)


Tries to resolve the Wikidata ID of an object given its string representation
Parameters:
  • property -- Wikidata ID of the property to resolve
  • value -- String value
  • language -- Search only this language
  • kwargs -- Additional info that might be useful to help the resolver


strephit.commons.wikidata.resolver(*properties)


Decorator to register a function as resolver for the given properties.


strephit.commons.wikidata.resolver_with_hints(property, value, language, **kwargs)


Resolves people names. Works better if generic biographic
information, such as birth/death dates, is provided.
Parameters:
kwargs -- dictionary of wikidata property -> list of values


strephit.commons.wikidata.search(term, language, type_=None, label_exact=True, limit='15')


Uses the wikidata APIs to search for a term. Can optionally specify a type
(corresponding to the 'instance of' P31 wikidata property. If no type is
specified simply returns all the items containing *term* in *label*
Parameters:
  • term (str) -- The term to look for
  • language (str) -- Search in this language
  • type (iterable) -- Type of the entity to look for, wikidata numeric id (i.e. without starting Q) Can be int or anything iterable
  • label_exact (bool) -- Filter entities whose labels matches exactly the search term
  • limit (str) -- How many results to return at most
Returns:
List of dicts with details (which details depend on *type_*)
Return type:
list of dicts

strephit.corpus_analysis package

[edit]

back to top

strephit.corpus_analysis.compute_lu_distribution module

[edit]

back to top


strephit.corpus_analysis.compute_lu_distribution.worker_with_sentences(bio)


Produces an histogram counting the number of verbs
for each sentence appearing in the biography
Parameters:
bio (str) -- The biography to analyze
Returns:
histogram of frequenties
Type:
dict


strephit.corpus_analysis.compute_lu_distribution.worker_with_sub_sentences(bio)


Produces an histogram counting the number of verbs
for each phrase appearing in the biography
Parameters:
bio (str) -- The biography to analyze
Returns:
histogram of frequenties
Type:
dict

strephit.corpus_analysis.extract_framenet_frames module

[edit]

back to top


strephit.corpus_analysis.extract_framenet_frames.extract_top_corpus_tokens(enriched_lemmas, all_lemma_tokens)


Extract the subset of corpus lemmas with tokens gievn the set of top lemmas
Parameters:
  • enriched_lemmas (dict) -- Dict returned by "intersect_lemmas_with_framenet()"
  • all_lemma_tokens (dict) -- Dict of all corpus lemmas with tokens
Returns:
the top lemmas with tokens dict
Return type:
dict


strephit.corpus_analysis.extract_framenet_frames.get_top_n_lus(ranked_lus, n)


Extract the top N Lexical Units (LUs) from a ranking.
Parameters:
  • ranked_lus (dict) -- LUs ranking, as returned by "compute_ranking()"
  • n (int) -- Number of top LUs to return
Returns:
the top N LUs with their ranking scores
Return type:
dict


strephit.corpus_analysis.extract_framenet_frames.intersect_lemmas_with_framenet(corpus_lemmas, wikidata_properties)


Intersect verb lemmas extracted from the input corpus with FrameNet Lexical Units (LUs).
Parameters:
  • corpus_lemmas (dict) -- dict of verb lemmas with their ranking scores
  • wikidata_properties (dict) -- dict with all Wikidata properties
Returns:
a dictionary of corpus lemmas enriched with FrameNet LUs data (dicts)
Return type:
dict

strephit.corpus_analysis.rank_verbs module

[edit]

back to top


class strephit.corpus_analysis.rank_verbs.PopularityRanking(corpus_path, pos_tag_key)


Ranking based on the popularity of each verb. Simply counts the
frequency of each lemma over all corpus

find_ranking(processes=0, bulk_size=10000, normalize=True)



static score_from_tokens(tokens)



class strephit.corpus_analysis.rank_verbs.TFIDFRanking(vectorizer, verbs, tfidf_matrix)


Computes TF-IDF based rankings.
The first ranking is based on the average TF-IDF score of each lemma over all corpus
The second ranking is based on the average standard deviation of TF-IDF scores
of each lemma over all corpus

find_ranking(processes=0)


Ranks the verbs
Parameters:
processes (int) -- How many processes to use for parallel ranking
Returns:
tuple with average tf-idf and average standard deviation ordered rankings
Return type:
tuple of (OrderedDict, OrderedDict)

score_lemma(lemma)


Computess TF-IDF based score of a single lemma
Parameters:
lemma (str) -- The lemma to score
Returns:
tuple with lemma, average tf-idf, average of tf-idf standard deviations
Return type:
tuple of (str, float, float)


strephit.corpus_analysis.rank_verbs.compute_tf_idf_matrix(corpus_path, document_key)


Computes the TF-IDF matrix of the corpus
Parameters:
  • corpus_path (str) -- path of the corpus
  • document_key (str) -- where the textual content is in the corpus
Returns:
a vectorizer and the computed matrix
Return type:
tuple


strephit.corpus_analysis.rank_verbs.get_similarity_scores(verb_token, vectorizer, tf_idf_matrix)


Compute the cosine similarity score of a given verb token against the input corpus TF/IDF matrix.
Parameters:
  • verb_token (str) -- Surface form of a verb, e.g., born
  • vectorizer (sklearn.feature_extraction.text.TfidfVectorizer) -- Vectorizer used to transform verbs into vectors
Returns:
cosine similarity score
Return type:
ndarray


strephit.corpus_analysis.rank_verbs.harmonic_ranking(*rankings)


Combines individual rankings with an harmonic mean to obtain a final ranking
Parameters:
rankings -- dictionary of individual rankings
Returns:
the new, combined ranking


strephit.corpus_analysis.rank_verbs.produce_lemma_tokens(pos_tagged_path, pos_tag_key, language)


Extracts a map from lemma to all its tokens
Parameters:
  • pos_tagged_path (str) -- path of the pos-tagged corpus
  • pos_tag_key (str) -- where the pos tag data is in each item
  • language -- language of the corpus
Returns:
mapping from lemma to tokens
Return type:
dict

strephit.corpus_analysis.test_pos_taggers module

[edit]

back to top


strephit.corpus_analysis.test_pos_taggers.tag(text, tt_home)


strephit.extraction package

[edit]

back to top

strephit.extraction.balanced_extract module

[edit]

back to top


strephit.extraction.balanced_extract.extract_sentences(sentences, probabilities, processes=0, input_encoded=False, output_encoded=False)


Extracts some sentences from the corpus following the given probabilities
Parameters:
  • sentences (iterable) -- Extracted sentences
  • probabilities (dict) -- Conditional probabilities of extracting a sentence containing a specific LU given the source of the sentence. It is therefore a mapping source -> probabilities, where probabilities is itself a mapping LU -> probability
  • processes (int) -- how many processes to use for parallel execution
  • input_encoded (bool) -- whether the corpus is an iterable of dictionaries or an iterable of JSON-encoded documents. JSON-encoded documents are preferable over large size dictionaries for performance reasons
  • output_encoded (bool) -- whether to return a generator of dictionaries or a generator of JSON-encoded documents. Prefer encoded output for performance reasons
Returns:
Generator of sentences


strephit.extraction.balanced_extract.lu_count(sentences, processes=0, input_encoded=False)


Count how many sentences per LU there are for each source
Parameters:
  • sentences (iterable) -- Corpus with the POS-tagged sentences
  • processes (int) -- how many processes to use for parallel execution
  • input_encoded (bool) -- whether the corpus is an iterable of dictionaries or an iterable of JSON-input_encoded documents. JSON-input_encoded documents are preferable over large size dictionaries for performance reasons
Returns:
A dictionary source -> frequencies, where frequencies is
another dictionary lemma -> count
Type:
bool

strephit.extraction.extract_sentences module

[edit]

back to top


class strephit.extraction.extract_sentences.GrammarExtractor(corpus, document_key, sentences_key, language, lemma_to_token, match_base_form)


Bases: "strephit.extraction.extract_sentences.SentenceExtractor"
Grammar-based extraction strategy: pick sentences that comply with a pre-defined grammar.

extract_from_item(item)



grammars = {'en': '\n NOPH: {<PDT>?<DT|PP.*|>?<CD>?<JJ.*|VVN>*<N.+|FW>+<CC>?}\n CHUNK: {<NOPH>+<MD>?<V.+>+<IN|TO>?<NOPH>+}\n ', 'it': '\n SN: {<PRO.*|DET.*|>?<ADJ>*<NUM>?<NOM|NPR>+<NUM>?<ADJ|VER:pper>*}\n CHUNK: {<SN><VER.*>+<SN>}\n '}



parser = None



setup_extractor()



splitter = None



class strephit.extraction.extract_sentences.ManyToManyExtractor(corpus, document_key, sentences_key, language, lemma_to_token, match_base_form)


Bases: "strephit.extraction.extract_sentences.SentenceExtractor"
n2n extraction strategy: many sentences per many LUs
N.B.: the same sentence is likely to appear multiple times

extract_from_item(item)



setup_extractor()



splitter = None



class strephit.extraction.extract_sentences.OneToOneExtractor(corpus, document_key, sentences_key, language, lemma_to_token, match_base_form)


Bases: "strephit.extraction.extract_sentences.SentenceExtractor"
121 extraction strategy: 1 sentence per 1 LU
N.B.: the same sentence will appear only once
the sentence is assigned to a RANDOM LU

all_verb_tokens = None



extract_from_item(item)



setup_extractor()



splitter = None



token_to_lemma = None



class strephit.extraction.extract_sentences.SentenceExtractor(corpus, document_key, sentences_key, language, lemma_to_token, match_base_form)


Base class for sentence extractors.

extract(processes=0)


Processes the corpus extracting sentences from each item
and storing them in the item itself.
Parameters:
processes (int) -- how many processes to use for parallel tagging
Returns:
the extracted sentences
Type:
generator of dicts

extract_from_item(item)


Extract sentences from an item. Relies on *setup_extractor*
having been called
Parameters:
item (dict) -- Item from which to extract sentences
Returns:
The original item and list of extracted sentences
Return type:
tuple of dict, list

setup_extractor()


Optional setup code, run before starting the extraction

teardown_extractor()


Optional teardown code, run after the extraction


class strephit.extraction.extract_sentences.SyntacticExtractor(corpus, document_key, sentences_key, language, lemma_to_token, match_base_form)


Bases: "strephit.extraction.extract_sentences.SentenceExtractor"
Tries to split sentences into sub-sentences so that each of them
contains only one LU

all_verbs = None



extract_from_item(item)



find_sub_sentences(tree)



find_terminals(tree, label=None)



parser = None



setup_extractor()



splitter = None



token_to_lemma = None



strephit.extraction.extract_sentences.extract_sentences(corpus, sentences_key, document_key, language, lemma_to_tokens, strategy, match_base_form, processes=0)


Extract sentences from the given corpus by matching tokens against a given set.
Parameters:
  • corpus -- Corpus as an iterable of documents
  • sentences_key (str) -- dict key where to put extracted sentences
  • document_key (str) -- dict key where the textual document is
  • language (str) -- ISO 639-1 language code used for tokenization and sentence splitting
  • lemma_to_tokens (dict) -- Dict with corpus lemmas as keys and tokens to be matched as values
  • strategy (str) -- One of the 4 extraction strategies ['121', 'n2n', 'grammar', 'syntactic']
  • match_base_form (bool) -- whether to match verbs base form
  • processes (int) -- How many concurrent processes to use
Returns:
the corpus, updated with the extracted sentences and the number of extracted sentences
Return type:
generator of tuples

strephit.extraction.process_semistructured module

[edit]

back to top


class strephit.extraction.process_semistructured.SemistructuredSerializer(language, sourced_only)



process_corpus(items, output_file, dump_unresolved_file=None, genealogics=None, processes=0)



resolve_genealogics_family(input_file, url_to_id)


Performs a second pass on genealogics to resolve additional family members

serialize_item(item)


Converts an item to quick statements.
Parameters:
item -- Scraped item, either str (json) or dict
Returns:
tuples <success, item> where item is an entity which
could not be resolved if success is false, otherwise it is a
<subject, property, object, source> tuple
Return type:
generator

strephit.extraction.source_id_mappings module

[edit]

back to top

strephit.rule_based.resources package

[edit]

back to top

strephit.rule_based.resources.frame_repo module

[edit]

back to top

strephit.rule_based package

[edit]

back to top

Subpackages

[edit]

back to top

  • strephit.rule_based.resources package
  • Submodules
  • strephit.rule_based.resources.frame_repo module

strephit.rule_based.classify module

[edit]

back to top


class strephit.rule_based.classify.RuleBasedClassifier(frame_data, language)


A simple rule-based classifier
The frame is recognized solely based on the lexical unit
and frame elements are assigned to linked entities with
a suitable type

assign_frame_elements(linked, frame)


Try to assign a frame element to each of the linked entities
based on their ontology type(s)
Parameters:
  • linked -- Entities found in the sentence
  • frame -- Frame data
Returns:
List of assigned frames

label_sentence(sentence, normalize_numerical, score_type, core_weight)


Labels a single sentence
Parameters:
  • sentence -- Sentence data to label
  • normalize_numerical -- Automatically normalize numerical FEs
  • score_type -- Which type of score (if any) to use to compute the classification confidence
  • core_weight -- Weight of the core FEs (used in the scoring)
Returns:
Labeled data

label_sentences(sentences, normalize_numerical, score_type, core_weight, processes=0, input_encoded=False, output_encoded=False)


Process all the given sentences with the rule-based classifier,
optionally giving a confidence score
Parameters:
  • sentences -- List of sentence data
  • normalize_numerical -- Whether to automatically normalize numerical expressions
  • score_type -- Which type of score (if any) to use to compute the classification confidence
  • core_weight -- Weight of the core FEs (used in the scoring)
  • processes -- how many processes to use to concurrently label sentences
  • input_encoded -- whether the corpus is an iterable of dictionaries or an iterable of JSON-encoded documents. JSON-encoded documents are preferable over large size dictionaries for performance reasons
  • output_encoded -- whether to return a generator of dictionaries or a generator of JSON-encoded documents. Prefer encoded output for performance reasons
Returns:
Generator of labeled sentences

strephit.rule_based.cli module

[edit]

back to top

strephit.side_projects package

[edit]

back to top

strephit.side_projects.wlm module

[edit]

back to top


strephit.side_projects.wlm.process_row(data)



strephit.side_projects.wlm.wlmid_resolver(property, value, language, **kwargs)


strephit.sphinx_wikisyntax package

[edit]

back to top

sphinx_wikisyntax

[edit]

back to top

Sphinx extension to generate documentation in wikisyntax format


strephit.sphinx_wikisyntax.setup(app)


strephit.sphinx_wikisyntax.builder module

[edit]

back to top

sphinx_wikisyntax

[edit]

back to top

Wikisyntax Sphinx builder.


class strephit.sphinx_wikisyntax.builder.WikisyntaxBuilder(app)


Bases: "sphinx.builders.text.TextBuilder"

allow_parallel = True



format = 'wikisyntax'



name = 'wikisyntax'



out_suffix = '.wiki'



prepare_writing(docnames)


strephit.sphinx_wikisyntax.writer module

[edit]

back to top

sphinx_wikisyntax

[edit]

back to top

Custom docutils writer for wikisyntax


class strephit.sphinx_wikisyntax.writer.WikisyntaxTranslator(document, builder)


Bases: "sphinx.writers.text.TextTranslator"

MAXWIDTH = 20000000000



STDINDENT = 1



depart_block_quote(node)



depart_centered(node)



depart_doctest_block(node)



depart_document(node)



depart_emphasis(node)



depart_list_item(node)



depart_literal_emphasis(node)



depart_literal_strong(node)



depart_strong(node)



depart_subscript(node)



depart_superscript(node)



depart_table(node)



depart_target(node)



depart_title(node)


Called when the end of a section's title is encountered

end_state(wrap=False, end=[''], first=None)



visit_block_quote(node)



visit_centered(node)



visit_desc_parameterlist(node)


Called when the parameter list of a function is encountered

visit_desc_signature(node)


Called when the full name (incl. module) of a function is encountered

visit_doctest_block(node)



visit_emphasis(node)



visit_literal_emphasis(node)



visit_literal_strong(node)



visit_strong(node)



visit_subscript(node)



visit_superscript(node)



visit_target(node)



visit_transition(node)



class strephit.sphinx_wikisyntax.writer.WikisyntaxWriter(builder)


Bases: "docutils.writers.Writer"

output = None



settings_defaults = {}



settings_spec = ('No options here.', '', ())



supported = ('text',)



translate()


strephit.web_sources_corpus.spiders package

[edit]

back to top

strephit.web_sources_corpus.spiders.BaseSpider module

[edit]

back to top


class strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"
Generic base spider, to abstract most of the work.
Specify the selectors to suit the website to scrape. The spider first uses
a list of selectors to reach a page containing the list of items to scrape.
Another selector is used to extract urls pointing to detail pages, containing
the details of the items to scrape. Finally a third selector is used to
extract the url pointing to the next "list" page.
  • *list_page_selectors* is a list of selectors used to reach the page containing the items to scrape. Each selector is applied to the page(s) fetched by extracting the url from the previous page using the preceding selector.
  • *detail_page_selectors* extract the urls pointing to the detail pages. Can be a single selector or a list.
  • *next_page_selectors* extracts the url pointing to the next page
Selector starting with *css:* are css selectors, those starting with *xpath:*
are xpath selectors, all others should follow the syntax *method:selector*,
where *method* is the name of a method of the spider and *selector* is another
selector specified in the same way as above). The method is used to transform
the result obtained by extracting the item pointed by the selecctor and should
accept the response as first parameter and the result of extracting the data
pointed by the selector (only if specified).
The spider provides a simple method to parse items. Item class is specified in
  • item_class* (must inherit from *scrapy.Item*) and item fields are specified
in the dict *item_fields*, whose keys are field names and values are selectors
following the syntax described above. They can also be lists or dicts arbitrarily
nested eventually containing selectors.
Each item can be processed and refined by the method *refine_item*.

clean(response, strings, unicode=True)


Utility function to clean strings. Can be used within your selectors

detail_page_selectors = None



get_elements_from_selector(response, selector)



item_class = None



item_fields = {}



list_page_selectors = None



make_url_absolute(page_url, url)



next_page_selectors = None



parse(response)


First stage of the spider with the goal of reaching the list page.

parse_detail(response)


Third stage of the spider, parses the detail page to produce an item

parse_list(response)


Second stage of the spider implementing pagination

refine_item(response, item)


Applies any custom post-processing to the item, override if needed.
Return None to discard the item

strephit.web_sources_corpus.spiders.academia_net module

[edit]

back to top


class strephit.web_sources_corpus.spiders.academia_net.AcademiaNetSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.academia-net.org']



detail_page_selectors = 'xpath:.//li[@class="profil"]/div[1]/a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'name': 'clean:xpath:.//h1[contains(@class, "profilname")]/text()'}



list_page_selectors = None



name = 'academia_net'



next_page_selectors = 'xpath:.//div[@class="jumplist"]/a[last()]/@href'



refine_item(response, item)



start_urls = ('http://www.academia-net.org/search/?sv%5Barea_id%5D%5B0%5D=1252&sv%5Br_rbs_fachgebiete%5D%5B0%5D=&_seite=1',)


strephit.web_sources_corpus.spiders.american_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.american_bio.AmericanBioSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]/table[1]//tr[3]//a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = 'xpath:.//div[@id="mw-content-text"]/table[2]//ul[1]/li/a/@href'



name = 'american_bio'



next_page_selectors = None



start_urls = ('https://en.wikisource.org/wiki/Appletons%27_Cyclop%C3%A6dia_of_American_Biography',)


strephit.web_sources_corpus.spiders.australasian_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.australasian_bio.AustralasianBioSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]//table//tr[2]//a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = None



name = 'australasian_bio'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/The_Dictionary_of_Australasian_Biography',)


strephit.web_sources_corpus.spiders.australian_dictionary_of_biography module

[edit]

back to top


class strephit.web_sources_corpus.spiders.australian_dictionary_of_biography.AustralianDictionaryOfBiographySpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"
A spider for the Australian Dictionary of Biography website

allowed_domains = ['adb.anu.edu.au']



name = 'australian_dictionary_of_biography'



parse(response)



parse_person(response)



start_urls = ['http://adb.anu.edu.au/biographies/name/']


strephit.web_sources_corpus.spiders.bbc_co_uk module

[edit]

back to top


class strephit.web_sources_corpus.spiders.bbc_co_uk.BbcCoUkSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.bbc.co.uk']



detail_page_selectors = 'xpath:.//a[@class="artist"]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="info"]/div[@id="bio"]//text()', 'other': {'read-more': 'clean:xpath:.//div[@id="info"]//div[@id="read-more"]//text()', 'short-desc': 'xpath:.//div[@id="info"]/ul[@id="short-desc"]/li//text()', 'oup': 'clean:xpath:.//div[@id="info"]/div[@id="oup"]/p[1]/text()', 'how-to-cite': 'clean:xpath:.//div[@id="how-to-cite"]//text()'}, 'name': 'clean:xpath:.//div[@id="info"]/h1/text()'}



list_page_selectors = None



name = 'bbc_co_uk'



next_page_selectors = 'xpath:.//div[@class="topPagination"]//li[@class="next"]//a/@href'



refine_item(response, item)



start_requests()


strephit.web_sources_corpus.spiders.bio_english_lit module

[edit]

back to top


class strephit.web_sources_corpus.spiders.bio_english_lit.BioEnglishLitSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]/ul/li/a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = None



name = 'bio_english_lit'



next_page_selectors = None



start_urls = ('https://en.wikisource.org/wiki/A_Short_Biographical_Dictionary_of_English_Literature',)


strephit.web_sources_corpus.spiders.bishops module

[edit]

back to top


class strephit.web_sources_corpus.spiders.bishops.BishopsSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.catholic-hierarchy.org']



clean_name(response, name)



detail_page_selectors = 'xpath:/html/body/ul/li/a[1]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'name': 'clean_name:clean:xpath:.//h1[@align="center"]//text()'}



list_page_selectors = 'xpath:.//a[starts-with(@href, "la")]/@href'



name = 'bishops'



next_page_selectors = None



parse_bio(response)



parse_microdata(response)



parse_other(response)



refine_item(response, item)



start_urls = ('http://www.catholic-hierarchy.org/bishop/la.html',)


strephit.web_sources_corpus.spiders.brown_edu module

[edit]

back to top


class strephit.web_sources_corpus.spiders.brown_edu.BrownEduSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.brown.edu']



custom_settings = {'DOWNLOAD_DELAY': 0.5, 'RETRY_HTTP_CODES': ['403']}



detail_page_selectors = 'xpath:.//div[@class="index"]//a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@class="index"]//text()', 'other': {'credit': 'clean:xpath:.//div[@class="credit"]//text()'}, 'name': 'clean:xpath:.//p[@class="head"]/following-sibling::p[1]/strong/text()'}



list_page_selectors = None



name = 'brown_edu'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://www.brown.edu/Administration/News_Bureau/Databases/Encyclopedia/',)


strephit.web_sources_corpus.spiders.catholic_encyclopedia module

[edit]

back to top


class strephit.web_sources_corpus.spiders.catholic_encyclopedia.CatholicEncyclopediaSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]/table[1]//tr[4]//a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = 'xpath:.//div[@id="mw-content-text"]/ul[1]//a/@href'



name = 'catholic_encyclopedia'



next_page_selectors = None



start_urls = ('https://en.wikisource.org/wiki/Catholic_Encyclopedia_%281913%29',)


strephit.web_sources_corpus.spiders.cesar_org_uk module

[edit]

back to top


class strephit.web_sources_corpus.spiders.cesar_org_uk.CesarOrgUkSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['cesar.org.uk']



detail_page_selectors = 'xpath:.//td[@id="keywordColumn"]//a/@href'



item_class


alias of "WebSourcesCorpusItem"

list_page_selector = None



name = 'cesar_org_uk'



next_page_selectors = None



refine_item(response, item)



start_urls = ('http://cesar.org.uk/cesar2/people/people.php?fct=list&search=%25&listMaxRows=999999',)


strephit.web_sources_corpus.spiders.chinese_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.chinese_bio.ChineseBioSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@class="poem"]//a[not(@class="new")]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div[1]//p//text()', 'name': 'clean:xpath://div[@id="headerContainer"]/following-sibling::div[1]//p/b[1]/text()'}



list_page_selectors = None



name = 'chinese_bio'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/A_Chinese_Biographical_Dictionary',)


strephit.web_sources_corpus.spiders.christian_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.christian_bio.ChristianBioSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



base_url = 'https://en.wikisource.org/wiki/Dictionary_of_Christian_Biography_and_Literature_to_the_End_of_the_Sixth_Century/'



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]/ul//a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = None



name = 'christian_bio'



next_page_selectors = None



start_requests()


strephit.web_sources_corpus.spiders.cooperhewitt_org module

[edit]

back to top


class strephit.web_sources_corpus.spiders.cooperhewitt_org.CooperhewittOrgSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['collection.cooperhewitt.org']



detail_page_selectors = 'get_detail_page:xpath:.//div[@class="row"]/div[2]/ul[@class="list-o-things"]//h1/a/@href'



get_detail_page(response, urls)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[contains(@class, "person-bio")]/p//text()', 'name': 'clean:xpath:.//div[@class="page-header"]/h1/a/text()'}



list_page_selectors = None



name = 'cooperhewitt_org'



next_page_selectors = 'xpath:.//ul[@class="pagination"]/li[last()]/a/@href'



refine_item(response, item)



start_urls = ('http://collection.cooperhewitt.org/people/page1',)


strephit.web_sources_corpus.spiders.design_and_art_australia_online module

[edit]

back to top


class strephit.web_sources_corpus.spiders.design_and_art_australia_online.DesignAndArtAustraliaOnlineSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"
A spider for the Design & Art Australia Online website

allowed_domains = ['www.daao.org.au']



name = 'design_and_art_australia_online'



parse(response)



parse_bio(response)



parse_person(response)



start_urls = ['https://www.daao.org.au/search/?q&selected_facets=record_type_exact%3APerson&page=1&advanced=false&view=view_list&results_per_page=100']


strephit.web_sources_corpus.spiders.dictionaryofarthistorians_org module

[edit]

back to top


class strephit.web_sources_corpus.spiders.dictionaryofarthistorians_org.DictionaryofarthistoriansOrgSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['dictionaryofarthistorians.org']



detail_page_selectors = 'xpath:.//div[@class="navigation-by-letter"]/following-sibling::p/a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@class="arthist-publish-profile__body"]/p//text()', 'death': 'clean:xpath:.//div[@class="arthist-publish-profile__deathdate"]/p//text()', 'name': 'clean:xpath:.//h1[@class="arthist-publish-profile__name"]//text()', 'birth': 'clean:xpath:.//div[@class="arthist-publish-profile__birthdate"]/p//text()'}



list_page_selectors = None



name = 'dictionaryofarthistorians_org'



next_page_selectors = None



start_requests()


strephit.web_sources_corpus.spiders.dnb module

[edit]

back to top


class strephit.web_sources_corpus.spiders.dnb.DictionaryOfNationalBiographySpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"
A spider for the Dictionary of National Biography, in Wikisource

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//table//li/a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div//p//text()'}



list_page_selectors = 'xpath:.//dd/a/@href'



name = 'dnb'



next_page_selectors = 'xpath:.//span[@id="headernext"]/a/@href'



refine_item(response, item)



start_urls = ['https://en.wikisource.org/wiki/Dictionary_of_National_Biography,_1885-1900']


strephit.web_sources_corpus.spiders.dsi module

[edit]

back to top


class strephit.web_sources_corpus.spiders.dsi.DsiSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.uni-stuttgart.de']



detail_page_selectors = 'xpath:.//a[contains(., "Detail page of this illustrator")]/@href'



item_class


alias of "WebSourcesCorpusItem"

list_page_selectors = None



name = 'dsi'



next_page_selectors = 'xpath:.//a[contains(., ">")]/@href'



page_url = 'http://www.uni-stuttgart.de/hi/gnt/dsi2/index.php?table_name=dsi&function=search&where_clause=&order=lastname&order_type=ASC&page=%d'



refine_item(response, item)



start_requests()


strephit.web_sources_corpus.spiders.english_artists module

[edit]

back to top


class strephit.web_sources_corpus.spiders.english_artists.EnglishArtistsSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"

allowed_domains = ['en.wikisource.org']



finalize(item)



name = 'english_artists'



parse(response)



parse_detail(response)



start_urls = ('https://en.wikisource.org/wiki/A_Dictionary_of_Artists_of_the_English_School',)



text_from_node(node)


strephit.web_sources_corpus.spiders.freethinkers module

[edit]

back to top


class strephit.web_sources_corpus.spiders.freethinkers.FreethinkersSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"

allowed_domains = ['en.wikisource.org']



name = 'freethinkers'



parse(response)



start_urls = ('https://en.wikisource.org/wiki/A_Biographical_Dictionary_of_Ancient,_Medieval,_and_Modern_Freethinkers',)


strephit.web_sources_corpus.spiders.gameo_org module

[edit]

back to top


class strephit.web_sources_corpus.spiders.gameo_org.GameoOrgSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['gameo.org']



detail_page_selectors = 'xpath:.//table[@class="mw-allpages-table-chunk"]//a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]/h1[1]/preceding-sibling::*//text()'}



list_page_selectors = None



name = 'gameo_org'



next_page_selectors = 'xpath:.//td[@class="mw-allpages-nav"]/a[3]/@href'



parse_title(title)



refine_item(response, item)



start_urls = ('http://gameo.org/index.php?title=Special:AllPages&from=108+Chapel+%28100+Mile+House%2C+British+Columbia%2C+Canada%29',)


strephit.web_sources_corpus.spiders.genealogics module

[edit]

back to top


class strephit.web_sources_corpus.spiders.genealogics.GenealogicsSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"
A spider for Leo's Genealogics website

allowed_domains = ['www.genealogics.org']



name = 'genealogics'



parse(response)



parse_person(response)



start_urls = ['http://www.genealogics.org/search.php?mybool=AND&nr=200']


strephit.web_sources_corpus.spiders.greek_roman_bio_myth module

[edit]

back to top


class strephit.web_sources_corpus.spiders.greek_roman_bio_myth.GreekRomanBioMythSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]/ul/li/a[not(@class="new")]/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]/p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]/text()'}



list_page_selectors = 'xpath:.//div[@id="mw-content-text"]/ul/li[position()>2]/a/@href'



name = 'greek_roman_bio_myth'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/Dictionary_of_Greek_and_Roman_Biography_and_Mythology',)


strephit.web_sources_corpus.spiders.indian_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.indian_bio.IndianBioSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]/ul[position()>4]//a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = None



name = 'indian_bio'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/The_Indian_Biographical_Dictionary_(1915)',)


strephit.web_sources_corpus.spiders.irish_officers module

[edit]

back to top


class strephit.web_sources_corpus.spiders.irish_officers.IrishOfficersSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"

allowed_domains = ['en.wikisource.org']



name = 'irish_officers'



parse(response)



parse_detail(response)



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/Chronicle_of_the_law_officers_of_Ireland',)


strephit.web_sources_corpus.spiders.medical_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.medical_bio.MedicalBioSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]//ul//a[not(@class="new")]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div[1]//p[position()>1]//text()', 'other': {'born_died': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div[1]//p[1]/text()'}, 'name': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div[1]//p[1]/b/text()'}



list_page_selectors = 'xpath:(.//div[@id="mw-content-text"]//ol)[2]//a/@href'



name = 'medical_bio'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/American_Medical_Biographies',)


strephit.web_sources_corpus.spiders.men_at_the_bar module

[edit]

back to top


class strephit.web_sources_corpus.spiders.men_at_the_bar.MenAtTheBarSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



base_url = 'https://en.wikisource.org/wiki/Men-at-the-Bar/Names_'



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]//ul//a[not(@class="new")]/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = None



name = 'men_at_the_bar'



next_page_selectors = None



refine_item(response, item)



start_requests()


strephit.web_sources_corpus.spiders.men_of_time module

[edit]

back to top


class strephit.web_sources_corpus.spiders.men_of_time.MenOfTimeSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]//ul//a[not(@class="new")]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div[1]//text()', 'name': 'clean:xpath:.//span[@id="header_section_text"]//text()'}



list_page_selectors = 'xpath:.//div[@id="mw-content-text"]//table//ul//a[not(@class="new")]/@href'



name = 'men_of_time'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/Men_of_the_Time,_eleventh_edition',)


strephit.web_sources_corpus.spiders.metal_archives_com module

[edit]

back to top


class strephit.web_sources_corpus.spiders.metal_archives_com.MetalArchivesComSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"

allowed_domains = ['www.metal-archives.com']



base_url = 'http://www.metal-archives.com/search/ajax-artist-search/?field=alias&query=%2Aa%2A+OR+%2Ae%2A+OR+%2Ai%2A+OR+%2Ao%2A+OR+%2Au%2A&sEcho=1&iDisplayStart={}'



name = 'metal_archives_com'



parse(response)



parse_detail(response)



parse_extern(response)



start_urls = ('http://www.metal-archives.com/search/ajax-artist-search/?field=alias&query=%2Aa%2A+OR+%2Ae%2A+OR+%2Ai%2A+OR+%2Ao%2A+OR+%2Au%2A&sEcho=1&iDisplayStart=0',)


strephit.web_sources_corpus.spiders.modern_english_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.modern_english_bio.ModernEnglishBioSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"

allowed_domains = ['en.wikisource.org']



name = 'modern_english_bio'



parse(response)



parse_detail(response)



start_urls = ('https://en.wikisource.org/wiki/Modern_English_Biography',)


strephit.web_sources_corpus.spiders.munksroll module

[edit]

back to top


class strephit.web_sources_corpus.spiders.munksroll.MunksrollSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['munksroll.rcplondon.ac.uk']



detail_page_selectors = 'xpath:.//div[@id="maincontent"]/table//a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="prose"]//text()', 'name': 'clean:xpath:.//h2[@class="PageTitle"]/text()'}



list_page_selectors = None



name = 'munksroll'



next_page_selectors = None



refine_item(response, item)



start_requests()


strephit.web_sources_corpus.spiders.museothyssen_org module

[edit]

back to top


class strephit.web_sources_corpus.spiders.museothyssen_org.MuseothyssenOrgSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.museothyssen.org']



detail_page_selectors = 'xpath:.//ul[@id="autoresAZ"]/li/ul/li/a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//span[@id="contReader1"]//text()', 'other': {'born': 'clean:xpath:.//dl[@class="datosAutor"]/dt[contains(., "Born/Dead:")]/following-sibling::dd[1]//text()'}, 'name': 'clean:xpath:.//dl[@class="datosAutor"]/dt[contains(., "Author:")]/following-sibling::dd[1]//text()'}



list_page_selectors = None



name = 'museothyssen_org'



next_page_selectors = None



refine_item(response, item)



start_urls = ('http://www.museothyssen.org/en/thyssen/artistas',)


strephit.web_sources_corpus.spiders.musicians module

[edit]

back to top


class strephit.web_sources_corpus.spiders.musicians.MusiciansSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//table[@id="multicol"]//a/@href'



item_class


alias of "WebSourcesCorpusItem"

list_page_selectors = ['xpath:.//span[@class="mw-headline"]/parent::h2/following-sibling::ul//a/@href', 'xpath:.//span[.="Articles"]/parent::h2/following-sibling::ul//a/@href']



name = 'musicians'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/A_Dictionary_of_Music_and_Musicians',)


strephit.web_sources_corpus.spiders.national_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.national_bio.NationalBioSpider(year)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//table[@class="prettytable"]//tr[4]//a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]/text()'}



list_page_selectors = None



name = 'national_bio'



next_page_selectors = None


strephit.web_sources_corpus.spiders.naval_bio module

[edit]

back to top


class strephit.web_sources_corpus.spiders.naval_bio.NavalBioSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]/ul[position()>4]//a/@href'



get_name_from_title(response, title)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="mw-content-text"]//p[position()>1]//text()', 'name': 'get_name_from_title:clean:xpath:.//h1[@id="firstHeading"]//text()'}



list_page_selectors = None



name = 'naval_bio'



next_page_selectors = None



start_urls = ('https://en.wikisource.org/wiki/A_Naval_Biographical_Dictionary',)


strephit.web_sources_corpus.spiders.newulsterbiography_co_uk module

[edit]

back to top


class strephit.web_sources_corpus.spiders.newulsterbiography_co_uk.NewulsterbiographyCoUkSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.newulsterbiography.co.uk']



detail_page_selectors = 'xpath:.//div[@id="search_results"]/p/a/@href'



get_bio(response, values)



get_name(response, values)



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'other': {'profession': 'xpath:.//span[@class="person_heading_profession"]//text()'}, 'bio': 'get_bio:xpath:.//div[@id="person_details"]/div/br[1]/preceding-sibling::*//text()', 'death': 'clean:xpath:.//div[@id="person_details"]/div/table[2]//tr[2]/td[2]/text()', 'name': 'get_name:xpath:.//h1[@class="person_heading"]/br/preceding-sibling::text()', 'birth': 'clean:xpath:.//div[@id="person_details"]/div/table[2]//tr[1]/td[2]/text()'}



list_page_selectors = None



name = 'newulsterbiography_co_uk'



next_page_selectors = None



start_urls = ('http://www.newulsterbiography.co.uk/index.php/home/browse/all',)


strephit.web_sources_corpus.spiders.nndb_com module

[edit]

back to top


class strephit.web_sources_corpus.spiders.nndb_com.NndbComSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.nndb.com']



detail_page_selectors = 'xpath:.//a[contains(@href, "http://www.nndb.com/people/")]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'name': 'clean:xpath:.//td/font/b/text()'}



list_page_selectors = 'xpath:.//a[@class="newslink"]/@href'



name = 'nndb_com'



refine_item(response, item)



start_urls = ('http://www.nndb.com/',)


strephit.web_sources_corpus.spiders.parliament_uk module

[edit]

back to top


class strephit.web_sources_corpus.spiders.parliament_uk.ParliamentUkSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.parliament.uk']



clean_name(response, name)



detail_page_selectors = 'xpath:.//table//tr/td/a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'name': 'clean_name:clean:xpath:.//div[@id="commons-biography-header"]/h1//text()'}



list_page_selectors = None



name = 'parliament_uk'



next_page_selectors = None



refine_item(response, item)



start_urls = ('http://www.parliament.uk/mps-lords-and-offices/mps/',)


strephit.web_sources_corpus.spiders.portraits_and_sketches module

[edit]

back to top


class strephit.web_sources_corpus.spiders.portraits_and_sketches.PortraitsAndSketchesSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]//table//a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div[1]//text()', 'name': 'clean:xpath:(.//div[@class="tiInherit"]/p/span)[1]//text()'}



list_page_selectors = None



name = 'portraits_and_sketches'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/Cartoon_portraits_and_biographical_sketches_of_men_of_the_day',)


strephit.web_sources_corpus.spiders.rkd_nl module

[edit]

back to top


class strephit.web_sources_corpus.spiders.rkd_nl.RKDArtistsSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"
A spider for RKD Netherlands Institute for Art History website

allowed_domains = ['rkd.nl']



detail_page_selectors = 'xpath:.//div[@class="header"]/a/@href'



extract_dl_key_value(dl_pairs, item)


Feed the item with key-value pairs extracted from <dl> tags

item_class


alias of "WebSourcesCorpusItem"

item_fields = {'url': 'make_url:xpath:.//div[@class="record-id"]//text()', 'name': 'clean:xpath:.//h2/text()'}



list_page_selectors = None



make_url(response, artist_id)



name = 'rkd_nl'



next_page_selectors = 'xpath:.//a[@title="Next page"]/@href'



refine_item(response, item)



start_urls = ['https://rkd.nl/en/explore/artists']


strephit.web_sources_corpus.spiders.royalsociety_org module

[edit]

back to top


class strephit.web_sources_corpus.spiders.royalsociety_org.RoyalsocietyOrgSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"

allowed_domains = ['royalsociety.org']



name = 'royalsociety_org'



parse(response)



parse_fellow(response)



start_requests()



start_urls = ('http://www.royalsociety.org/',)


strephit.web_sources_corpus.spiders.sculpture_uk module

[edit]

back to top


class strephit.web_sources_corpus.spiders.sculpture_uk.SculptureUkSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['sculpture.gla.ac.uk']



detail_page_selectors = 'xpath:.//div[@class="featured"]/table//a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@class="featured"]/p[child::b][last()]/following-sibling::p//text()', 'death': 'clean:xpath:.//b[.="Died"]/following-sibling::text()[1]', 'name': 'clean:xpath:.//div[@class="featured"]/h1//text()', 'birth': 'clean:xpath:.//b[.="Born"]/following-sibling::text()[1]'}



list_page_selectors = 'xpath:.//div[@class="featuredpeople"]//a/@href'



name = 'sculpture_uk'



next_page_selectors = None



refine_item(response, item)



start_urls = ('http://sculpture.gla.ac.uk/browse/index.php',)


strephit.web_sources_corpus.spiders.structurae_net module

[edit]

back to top


class strephit.web_sources_corpus.spiders.structurae_net.StructuraeNetSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['structurae.net']



detail_page_selectors = 'xpath:.//ol[@class="searchlist"]//a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'other': {'bibliography': 'xpath:.//div[@id="person-bibliography"]//li/a/@href', 'publications': 'xpath:.//div[@id="person-literature"]//li//a/@href', 'websites': 'xpath:.//div[@id="person-websites"]//li/a/@href', 'participated_in': 'xpath:.//div[@id="person-references"]//a/@href'}, 'name': 'clean:xpath:.//h1/span[@itemprop="name"]//text()'}



list_page_selectors = 'xpath:.//ol[@class="commalist"]//a/@href'



name = 'structurae_net'



next_page_selectors = 'xpath:(.//div[@class="nextPageNav"])[1]//a[1]/@href'



refine_item(response, item)



start_urls = ('http://structurae.net/persons/',)


strephit.web_sources_corpus.spiders.vocab_getty_edu module

[edit]

back to top


class strephit.web_sources_corpus.spiders.vocab_getty_edu.VocabGettyEduSpider(name=None, **kwargs)


Bases: "scrapy.spiders.Spider"

allowed_domains = ['vocab.getty.edu']



bio_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fbio2%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++skos%3AscopeNote+%3Fnote.%0D%0A+%3Fnote+rdf%3Avalue+%3Fbio2.%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'



bio_query_2 = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3FshortBio%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3Adescription+%3FshortBio.%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'



birth_place_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3FdeathPlace%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3AdeathPlace+%3Fdpf.%0D%0A+%3Fdp+foaf%3Afocus+%3Fdpf%3B%0D%0A++++++gvp%3AparentString+%3FdeathPlace.%0D%0A%7D&_implicit=false&implicit=true&_equivalent=false&_form=%2Fsparql'



birth_year_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fbirth%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+gvp%3AestStart+%3Fbirth.%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'



completed_queries = set([])



db_connection = <sqlite3.Connection object>



death_place_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3FbirthPlace%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3AbirthPlace+%3Fbpf.%0D%0A+%3Fbp+foaf%3Afocus+%3Fbpf%3B%0D%0A++++++gvp%3AparentString+%3FbirthPlace.%0D%0A%7D&_implicit=false&implicit=true&_equivalent=false&_form=%2Fsparql'



death_year_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fdeath%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+gvp%3AestEnd+%3Fdeath%3B%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'



finalize_data(table)


This method will be called after *table* has been populated. When all tables have been
populated with data joins them and yields the polished items.

gender_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fgender%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3Agender+%3Fgender%3B%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'



load_into_db(table)



name = 'vocab_getty_edu'



name_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fname%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++gvp%3AprefLabelGVP+%3Flabel.%0D%0A%3Flabel+gvp%3Aterm+%3Fname%0D%0A%7D&_implicit=false&_equivalent=false&_form=%2Fsparql'



nationality_query = 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fnationality%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AnationalityPreferred+%3Fny.%0D%0A+%3Fny+gvp%3AprefLabelGVP+%3FlblNationality.%0D%0A+%3FlblNationality+gvp%3Aterm+%3Fnationality.+%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'



queries = [('name', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fname%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++gvp%3AprefLabelGVP+%3Flabel.%0D%0A%3Flabel+gvp%3Aterm+%3Fname%0D%0A%7D&_implicit=false&_equivalent=false&_form=%2Fsparql'), ('bio', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fbio2%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++skos%3AscopeNote+%3Fnote.%0D%0A+%3Fnote+rdf%3Avalue+%3Fbio2.%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'), ('bio2', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3FshortBio%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3Adescription+%3FshortBio.%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'), ('nationality', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fnationality%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AnationalityPreferred+%3Fny.%0D%0A+%3Fny+gvp%3AprefLabelGVP+%3FlblNationality.%0D%0A+%3FlblNationality+gvp%3Aterm+%3Fnationality.+%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'), ('birth_year', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fbirth%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+gvp%3AestStart+%3Fbirth.%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'), ('birth_place', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3FdeathPlace%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3AdeathPlace+%3Fdpf.%0D%0A+%3Fdp+foaf%3Afocus+%3Fdpf%3B%0D%0A++++++gvp%3AparentString+%3FdeathPlace.%0D%0A%7D&_implicit=false&implicit=true&_equivalent=false&_form=%2Fsparql'), ('death_year', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fdeath%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+gvp%3AestEnd+%3Fdeath%3B%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql'), ('death_place', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3FbirthPlace%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3AbirthPlace+%3Fbpf.%0D%0A+%3Fbp+foaf%3Afocus+%3Fbpf%3B%0D%0A++++++gvp%3AparentString+%3FbirthPlace.%0D%0A%7D&_implicit=false&implicit=true&_equivalent=false&_form=%2Fsparql'), ('gender', 'http://vocab.getty.edu/sparql.csv?query=SELECT+%3Fperson+%3Fgender%0D%0AWHERE+%7B%0D%0A%3Fperson+rdf%3Atype+gvp%3APersonConcept%3B%0D%0A++++++++foaf%3Afocus+%3Ffocus.%0D%0A+%3Ffocus+gvp%3AbiographyPreferred+%3Fbio.%0D%0A+%3Fbio+schema%3Agender+%3Fgender%3B%0D%0A%7D&_implicit=false&_equivalent=false&equivalent=true&_form=%2Fsparql')]



row_to_item(row)


Converts a single row, result of the join between all tables, into a finished item

start_requests()


strephit.web_sources_corpus.spiders.wga_hu module

[edit]

back to top


class strephit.web_sources_corpus.spiders.wga_hu.WgaHuSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['www.wga.hu']



detail_page_selectors = ['xpath:.//table//td[@class="ARTISTLIST"]//a/@href', 'xpath:.//a[starts-with(@href, "/bio/")]/@href']



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//h3[.="Biography"]/following-sibling::p/text()', 'other': {'born-died': 'clean:xpath:.//div[@class="INDEX3"]//text()'}, 'name': 'clean:xpath:.//div[@class="INDEX2"]/text()'}



list_page_selectors = None



name = 'wga_hu'



next_page_selectors = None



refine_item(response, item)



start_requests()


strephit.web_sources_corpus.spiders.who_is_who_america module

[edit]

back to top


class strephit.web_sources_corpus.spiders.who_is_who_america.WhoIsWhoAmericaSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]//ul//a[not(@class="new")]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div//p[2]//text()', 'name': 'clean:xpath:.//div[@id="headerContainer"]/following-sibling::div//p/b/a/text()'}



list_page_selectors = 'xpath:.//table[@class="headertemplate"]//tr[3]//a[not(@class="new")]/@href'



name = 'who_is_who_america'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/Woman%27s_Who%27s_Who_of_America,_1914-15',)


strephit.web_sources_corpus.spiders.who_is_who_in_china module

[edit]

back to top


class strephit.web_sources_corpus.spiders.who_is_who_in_china.WhoIsWhoInChinaSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['en.wikisource.org']



detail_page_selectors = 'xpath:.//div[@id="mw-content-text"]//table//a[not(@class="new")]/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean:xpath:.//div[@class="tiInherit"]/following-sibling::p//text()', 'name': 'clean:xpath:(.//p/b)[2]/text()'}



list_page_selectors = None



name = 'who_is_who_in_china'



next_page_selectors = None



refine_item(response, item)



start_urls = ('https://en.wikisource.org/wiki/Who%27s_Who_in_China_(3rd_edition)',)


strephit.web_sources_corpus.spiders.yba_llgc_org_uk module

[edit]

back to top


class strephit.web_sources_corpus.spiders.yba_llgc_org_uk.YbaLlgcOrgUkSpider(name=None, **kwargs)


Bases: "strephit.web_sources_corpus.spiders.BaseSpider.BaseSpider"

allowed_domains = ['yba.llgc.org.uk']



clean_nu(response, strings)



detail_page_selectors = 'xpath:.//div[@id="text"]/p/a/@href'



item_class


alias of "WebSourcesCorpusItem"

item_fields = {'bio': 'clean_nu:xpath:.//div[@id="text"]//text()', 'other': {'sources': 'clean_nu:xpath:.//div[@id="text"]/div[@class="biog"]/ul/li[@class="bib_item"]//text()', 'contributer': 'clean_nu:xpath:.//div[@id="text"]/p[@class="contributer"]//text()', 'surname': 'clean_nu:xpath:.//div[@id="text"]/span[@class="article_header"]/b/span[@class="surname"]/text()', 'forename': 'clean_nu:xpath:.//div[@id="text"]/span[@class="article_header"]/b/span[@class="forename"]/text()'}}



list_page_selectors = None



name = 'yba_llgc_org_uk'



next_page_selectors = None



refine_item(response, item)



start_requests()


strephit.web_sources_corpus package

[edit]

back to top

Subpackages

[edit]

back to top

  • strephit.web_sources_corpus.spiders package
  • Submodules
  • strephit.web_sources_corpus.spiders.BaseSpider module
  • strephit.web_sources_corpus.spiders.academia_net module
  • strephit.web_sources_corpus.spiders.american_bio module
  • strephit.web_sources_corpus.spiders.australasian_bio module
  • strephit.web_sources_corpus.spiders.australian_dictionary_of_biography module
  • strephit.web_sources_corpus.spiders.bbc_co_uk module
  • strephit.web_sources_corpus.spiders.bio_english_lit module
  • strephit.web_sources_corpus.spiders.bishops module
  • strephit.web_sources_corpus.spiders.brown_edu module
  • strephit.web_sources_corpus.spiders.catholic_encyclopedia module
  • strephit.web_sources_corpus.spiders.cesar_org_uk module
  • strephit.web_sources_corpus.spiders.chinese_bio module
  • strephit.web_sources_corpus.spiders.christian_bio module
  • strephit.web_sources_corpus.spiders.cooperhewitt_org module
  • strephit.web_sources_corpus.spiders.design_and_art_australia_online module
  • strephit.web_sources_corpus.spiders.dictionaryofarthistorians_org module
  • strephit.web_sources_corpus.spiders.dnb module
  • strephit.web_sources_corpus.spiders.dsi module
  • strephit.web_sources_corpus.spiders.english_artists module
  • strephit.web_sources_corpus.spiders.freethinkers module
  • strephit.web_sources_corpus.spiders.gameo_org module
  • strephit.web_sources_corpus.spiders.genealogics module
  • strephit.web_sources_corpus.spiders.greek_roman_bio_myth module
  • strephit.web_sources_corpus.spiders.indian_bio module
  • strephit.web_sources_corpus.spiders.irish_officers module
  • strephit.web_sources_corpus.spiders.medical_bio module
  • strephit.web_sources_corpus.spiders.men_at_the_bar module
  • strephit.web_sources_corpus.spiders.men_of_time module
  • strephit.web_sources_corpus.spiders.metal_archives_com module
  • strephit.web_sources_corpus.spiders.modern_english_bio module
  • strephit.web_sources_corpus.spiders.munksroll module
  • strephit.web_sources_corpus.spiders.museothyssen_org module
  • strephit.web_sources_corpus.spiders.musicians module
  • strephit.web_sources_corpus.spiders.national_bio module
  • strephit.web_sources_corpus.spiders.naval_bio module
  • strephit.web_sources_corpus.spiders.newulsterbiography_co_uk module
  • strephit.web_sources_corpus.spiders.nndb_com module
  • strephit.web_sources_corpus.spiders.parliament_uk module
  • strephit.web_sources_corpus.spiders.portraits_and_sketches module
  • strephit.web_sources_corpus.spiders.rkd_nl module
  • strephit.web_sources_corpus.spiders.royalsociety_org module
  • strephit.web_sources_corpus.spiders.sculpture_uk module
  • strephit.web_sources_corpus.spiders.structurae_net module
  • strephit.web_sources_corpus.spiders.vocab_getty_edu module
  • strephit.web_sources_corpus.spiders.wga_hu module
  • strephit.web_sources_corpus.spiders.who_is_who_america module
  • strephit.web_sources_corpus.spiders.who_is_who_in_china module
  • strephit.web_sources_corpus.spiders.yba_llgc_org_uk module

strephit.web_sources_corpus.archive_org module

[edit]

back to top


strephit.web_sources_corpus.archive_org.parse_and_save(text, separator, out_file, url)


strephit.web_sources_corpus.britishmuseum_org module

[edit]

back to top


strephit.web_sources_corpus.britishmuseum_org.serialize_person(person)


strephit.web_sources_corpus.items module

[edit]

back to top


class strephit.web_sources_corpus.items.WebSourcesCorpusItem(*args, **kwargs)


Bases: "scrapy.item.Item"

fields = {'bio': {}, 'death': {}, 'name': {}, 'url': {}, 'other': {}, 'birth': {}}


strephit.web_sources_corpus.pipelines module

[edit]

back to top


class strephit.web_sources_corpus.pipelines.WebSourcesCorpusPipeline


Bases: "object"

process_item(item, spider)


strephit.web_sources_corpus.settings module

[edit]

back to top